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Let A = (aiX:l.~~o and B = (bij)':':"I~/=o be matrices of ranks I and m,
respectively. Suppose that A= (( -I)J a j) E SCI (sign consistent of order I) and
BE SCm' Denote by ~.N(A, B; v,, ..., vn ) the set of perfect splines with N knots
which have n distinct zeros in (0, I) with multiplicities v" ..., Vn , respectively, and
satisfy A1'(O) = 0, B1'(I) =0, where 1'(a) = (p(a), ... , pl'-II(aW. We show that there
is a unique p. E '~.N(A, B; VI' ... , vo ) of least uniform norm and that p. is charac­
terized by the equioscillatory property. This is closely related to the optimal
recovery of smooth functions satisfying boundary conditions by using the Hermite
data. © 1994 Academic Press. Inc.

1. INTRODUCTION

A perfect spline P( t) of degree r with knots {~;} ~ c (0, 1), ~ 1 < ... < ~N'

has the representation

(1.1 )

where {a i };:6are real constants and, as usual, t + = max {t, 0 }. The set of
all functions of form (1.1) is denoted by ?J, N'

Let A = (aij)7':1.~=o and B= (bij),:,;",rl-:/~O be matrices such that

(i) 0,,;;;1, m";;;r, rank A=I, rank B=m,

(ii) A= (( -1)j aij):·:l.~=oE SCI, BE SCm,

where A E SCI' means that all non-zero J1. x J1. subdeterminants of A maintain
the same sign, i.e., there exists (1 A E { -1, I} such that
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for every choice of iI' ..., ill and iI' ..., iI" where A (~::: ~) is the subdetermi­
nant of A composed of ii' ..., ill rows and iI' ...,ill columns, respectively.

Given A and B as above, we define functionals as follows:

r-l

AJ = L au/U)(O),
j~O

r- I

BJ= L bijfUI(I),
j=O

i= I, ..., I

i= 1, ..., m.
(1.2 )

For a given set ~ of functions such that fIr 1 1(0) and fIr - 1)( I) exist for
fE.~, we denote by ~(A, B) all functions fin ~ with AJ=O U= 1, ..., l)
and BJ =°(i = 1, ..., rn).

Some problems related to boundary conditions (1.2) have been considered.
The problem of existence of interpolating spline S with Ais = Bjs = °
U=l, ...,l,j=l, ...,m) is discussed in Ref. [7]. The n-widths of W:::(A,B)
in C [0, 1] are obtained [13], where

w.::: = {f Ipr- 1) abs. cont. on [0, I], II f(r)11 c.c :::; I}.

Given {v;}7~ 1 such that

n

r:::; L v;=N+r-l-m,
i= 1

we use .'?J,.,N(A, B; v\> ..., v,,) to denote the set of functions in .'?J,..N(A, B)
having n distinct zeros {x;}7~ 1 c (0,1) with multiplicities {vi}7~ l' respec­
tively. This paper is devoted to study the extremal problem:

(1.3 )

where II ·11 = II ·11 C[O,I]'

Problem (1.3) has been discussed in [I] for 1= m =°(i.e., no boundary
condition) and [9] for (1.2) being quasi-Hermite conditions, respectively.
We note that [9] only gives proof for the case m < N. As for the case
m = N (note that m:::; N), we see below that the proof is somewhat more
complicated.

It is well known that perfect splines are very important in the optimal
recovery (see [10, 11]). In fact, as in [5, 10], the intrinsic error of the best
scheme approximating f E W:::(A, B) in C[O, 1] by using information
{f(J)(x i ) I i = 1, ..., n, j = 0, ..., Vi -l} is equal to IIP(X, .)11, where P(X, .) E

.'?J,..N(A, B; 1'1' ..., vn ) vanishes at X= {(Xi' v;)} (see Lemma 1). Hence, the
zeros of P*E.'?J,.,N(A, B; VI' ... , vn ) that solves problem (1.3) determine the
optimal information. Moreover, spline interpolation at the zeros of p* is
an optimal algorithm (see [5]).
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The main results of this paper are as follows.
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THEOREM 1. Let {ei }7:/ be arbitrary positive numbers. Set (/ I = 0, (/ i =
L:~-==\ Vk> k=2, ..., n+ 1. Then there exists a unique PE&".N(A, B; VI' ..., vn )

with n distinct zeros {x;}7~ I and a positive number R such that

i= 1, ..., n + 1, (1.4 )

where O"E {-I, 1} fixed and {Yi}7:/ satisfy

with r(Yi)=O whenever YiE(O, 1).

THEOREM 2. There exists a unique perfect spline P* E &".N(A, B; VI' ... , vn),
which solves problem (1.3). Moreover, p* is characterized by the equi­
oscillatory property; i.e., there exist n + 1 points {y i} 7: II c [0, 1] such that

P*(Yi) = (-1 )<1+t1i IIP*II,

where 0" i are given as in Theorem 1.

i= 1, ..., n + 1,

2. AUXILIARY LEMMAS

Similar to [2], Li [9] proved the following result by the Hobby-Rice
theorem.

LEMMA 1. Given {x;}7=IC(0, 1), there is a function PE&".N(A,B;
VI' ... , vn) such that P vanishes at X = {(Xi' Vi)} 7~ l' where (Xi' V;) means that
Xi is a zero with multiplicity Vi'

Let a=(ai)7~IERn/{0}; S+(a) denotes the maximal number of sign
changes in the sequence ai' ... , an where zero terms are arbitrarily assigned
values 1 or -1. For example, S+ (1,0, 1) = 2.

LEMMA 2 [12, p. 163]. For any PE&".N, it holds that

Zr (P, (0, 1)):0::;; N + r - S+ (( ( - 1)j pUl(O) )J= 0) - S+ ((pUl(1) )J= 0)' (2.1 )

where Z r (f, I) is the total number of zeros of f at an interval I counting
multiplicities not greater than r.

We call P E &".N a perfect spline with maximal number of zeros if equality
holds in (2.1) for P. For such a perfect spline, its zeros and knots satisfy
the so-called interlacing conditions. To be precise, we denote by {Zi};~1
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and {~i} ;"'= I arranged in natural increasing order the zeros of P at (0, I)
and knots, respectively, where s is the number of zeros of P at (0, I)
counting multiplicities. Then [5]

(2.2)

whenever the subscripts are meaningful, where:xo = S+ «( (-1 )j PU)(O))j = 0)'

It is known that (see, e.g., [13]) for any PE.'1J!r,N(A, B), :Xo~/, /3o~m.

Therefore, any function P in ~.N(A, B; VI' ... , vn ) is with maximal number
of zeros and c(o = I, /30 = m.

LEMMA 3. If P E ~,N is with maximal number of zeros, so is P' E~ ~ I. N'

Proof Set C(;=S+«((-l)j pU)(O));~j)' /3i=S+((P(j)(l))j~J, i=O,1.
Let x and y be minimal zero and maximal zero of P in (0, 1), respectively.

Now we should distinguish the cases according to the values of :Xi and
fJ j, i = 0, 1. Suppose first that c(o - C( I= 1 and fJo - /31 = O. Since pir)(O) "" 0,
by [12], t=O is a left Rolle point of P (the definition of Rolle point can
be found in [12, p. 28]). By the extended Rolle theorem [12, p. 29J, there
exists at least a zero of P' in (0, x). Therefore,

Zr _I(P', (0, l))~Zr~I(P', (0, 1))+Zr_I(P', [x, y])

~ I +Zr(P, [x, yJ)-l =Zr(P, (0, I))

=N+(r-l)-C(I-/3I'

This together with Lemma 2 implies that P' E ~~ I.N is with maximal
number of zeros. The other cases may be treated similarly. So the proof is
complete.

Now we introduce some notations from [7] for later use. Let

Z= {x, 0, ... , r-I I XE (0, I)},

W = {O, ..., r - I, ~ I ~ E (0, I)},

and K(z, w) be a function defined on Z x Was follows:

K(x, i) = ui(x) = Xi,

K(x, 0 = (x - or+- 1,

oj
K(j, 0= OXj K(x, Olx~I'

K(j, i) = uV)(x)lx~ l'



PERFECT SPLINES 195

For given Z I < .. , < Zk' WI < ... < wp' the Fredholm matrix based on
K(z, w) is

(
ZI,,,,,Zk) k

K. = (K(z;, »j) )jJ= I'
»1' ... , wp

If some Z; and/or W j coincide, the corresponding columns and/or rows
are determined by successive derivatives (see [7] for the details). It is
shown in [7] that K(z, w) is total positive, i.e.,

d (
ZI,,,,,Zk) 0etK ~ .
WI' ... , Wk

(2.3 )

LEMMA 4. Given any {tj};~l' {Y;}~~lc(O,I) and {ij}~=lcU}j:ci

(r + I + m = k + 2) each of which is arranged in increasing order, we have
(JAO'B(J detLl~O, where 0'=(_1),1+1(/-1)/2 and Ll is a (k+s)x(k+s)
matrix whose ith column is

for i = 1, ... , k and k +ith column is

for i = 1, ..., s, with the same interpretation as in [7] if some t i coincide.

Proof For ease of notations we assume without loss of generality that
iJ = j - 1, j = 1, ..., k. It is obvious that AjuJ = ajj!.

Expanding Ll by minors based on the r + 1, ..., r + lth rows (if k < r, then
det Ll = 0) we get

det Ll = 0' " (- 1)JI + ... + 11 A ( 1, ... , I ) TIl (. - I)! det A .
L- . . 1, 11.·.·.JI'

1 ,,; J, < ... < J, ,,; k 1 I, ... , 1I i = 1

where AJI ..... J, is the submatrix of A by eliminating its r + 1, ..., r + Ith rows
and ii, ..., il columns. Let U:};:[ arranged in increasing order denote the
complements set of {M;=I to {i};~l' It can be verified that Ah ...J,=CD,
where

C=(~)
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(I, stands for the r x r identity matrix) and

(
t I' ..., t" 0, ..., r - 1 )

D=K.,., .
h - 1, ..., } k - ,- 1, Y I' ... , Ys

By the Cauchy-Binet formula (see [6, p. 1]) we have

From the definition of C it follows that CU;.·,'L':) is equal to zero
unless 1, ..., r are all ineluded among the indices {k i } ;;:;;" and equal to
B(k _~'H,mk _.)ifk;=i,i=I, ... ,r.Therefore

r+ I " ...• f+m •

(
1, ... , m)xB .
ii' ..., im

Since (2.3) and

( _ 1 )jl + ... + jl A ( 1, , 1 ) = A ( 1, , 1 )
jl' ,j, jl' ,j,

we have a A a Ba det L1 ~ O. The proof is complete.

3. PROOF OF THEOREMS

The proof of Theorem 2 may proceed as in [2] by use of Theorem 1. So
we only give the proof of Theorem 1.

Proof of Theorem 1. Let

(3.1 )

be an arbitrary perfect spline in ~,N(A, B; V 1 , ... , vn ) with n distinct zeros
{xo,i}7~IC(0, 1). Since Po has no other zero than Xo={(xo,i,v;)}7~1 in
(0, 1), it holds that

t E (XO,i-l' x o), i= 1, ..., n + 1,

where aE { -1,1} fixed, xo,o = 0 and xO,n+ 1 = 1.
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In what follows we have to distinguish the cases as we do in proving
Lemma 3. Let rI.; and P; be defined as in Lemma 3 for Po (we note that
rl.o = I, Po = m). We assume first that ao - a I = Po - PI = 1. By the proof of
Lemma 3, there exist {Yo,;}7~i any of which is a simple zero of P~ such
that

0<YO,I<XO,I<YO.2< ... <xO,n<Yo,n+l<l.

Put

eO,j= IPo(,vo.j)!,

ej(s) = eO.j + see; - eO,j),

j=l, ,n+l,

j= 1, , n+ 1, sE [0, I],

For s E [0, 1], we shall construct a function pes, . ) E ~.N(A, B; VI' ..., Vn),
with parameters a;(s), x;(s), Yi(S), ej(s), and R(s) such that

i = 1, ... , n + 1. (3.2)

To this end, we consider the system of equations:

pU>(s, 01, = x,(,) = 0

R(s) pes, y;(s)) = (-1 r+<1i e;(s),

P'(s, t)I'~YdS)=O'

A;P(s, .) = 0,

B;P(s, .) = 0,

i = 1, ..., n, j = 0, ..., V; - 1,

i=I, ... ,n+l,

i=l, ... ,n+l,

i = 1, ..., I,

i= 1, ... , m,

(3.3 )

where pU)(s, I) = (iY/olj) P(s, I). It is obvious that (Po, Ro= 1) satisfies
(3.3).

For the ease of computating Jacobian of (3.3) we reorder (3.3) as
follows:

p(",-l)(S, t)1,~x,(s)=O,

P'(s, t), ~ y,(') = 0,

pU)(s, t)I,~x,(s)=O,j=O, ..., v;-2,

R(s) pes, Y;+ I(S) = (-1 )a+a,.\ e;+ I(S),

A;P(s,·) = 0,

B;P(s, . ) = 0,

i= 1, ..., n,

i= I, ..., n + 1,

i= 1, ..., n,

i = 1, ..., I,

i= 1, ..., m,

(3.3')
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Denote by L1(s) the Jacobi matrix of (3.3') with respect to {xi}7~/,

{Y'}:'~II, R, {a,}::(~ and g'}~=I' Then (cf. [2J)

!l n + 1

det L1(s) = det J(s) IT plviI(s, x,(s) IT r(s, y,(s»
1= I j= I

(see (3.10) below for the explanation that each plv') is well defined), where
J(s) is a (N + r + I) x (N + r + 1) matrix with the first N + r + I-l-m rows

R (If) iI.
, ;,
" Sf\.'

P(s.y,) Ru"l.h) RII, ,U',)
2R(- II'"

;lY+
, 2R(-I)'~N " ,

(r-ll' (y, (r-l)! (Y'-'N).

0 u,,(x,1 ,(x,1
2( -1)'" " , 2( -1)' +N ,. ,

II. ~(x,-,,). (r-I)! (X,-o,N)+

o

RII, ,(y,)
2R(-1)' ,N

(r-I)! (y,-(vl'+'

o ui," 2~Xj) ",

and the last 1+ m rows

2R( --1)' "v

(r-I)! Crn " ~Nr+'

Expanding det J(s) based on the first column, we get

11+1

detJ(s)= L (-l)"1P(s,y) det J,(s),
j=l

where J,(s) is the submatrix of J(s) eliminated 1 column and (jj row.

(3.4 )
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We use {ZO,I~ZO,2~'" ~ZO,p} (p=N+r-l-m+l) to denote the
sequence

which is the set of zeros of P~ E 91,.- I,N counting multiplicities, It follows
from Lemma 3 and (2.2) that

ZO,j_ (1- 11 < ~O,j < ZO,j+ (r-1) - (1- I) (3,5 )

whenever the subscripts are meaningful.
Given any i, put {z~)Jf:-/= {ZO,Jf~I/{Yi} arranged m increasing

order. Then (3.5) yields

(i) (i)
ZO,j_1 < ~O,j < ZO,j+ r-I' (3.6)

On the other hand we see that Ji(s) has the form of matrix given as
in Lemma 4 only different in some rows and columns to some non-zero
constants, respectively, independent of i. It follows from Lemma 4, (3,1),
and (3.4) that

n + I

Idet J(O)I = I IPo(Yo.)1 Idet J,(O)I·
j~l

By the proof of Lemma 4 we have for some positive number y that

(3.7)

If m < N, then it follows from (3.6) and [7, Theorem I'] that for any
h}~~l and {jdZ'~l'

(

_(i) (i) • 1 . 1)
d "'OI,,,,,ZOp-I,)j- ''''')m- 0etK" > .

i'l -1, ..., i~_I-l, ~O.l' ..., ~O.N
(3.9)

Hence, (3.7), rank A = I and rank B = m give det J j (0) # O.
If m = N, the interlacing conditions (3.6) cannot guarantee that (3.9)

hold for all {id~~1 and {jk};~I' However, we also have detJj(O)#0 in
this case. In fact, in view of Lemma 4 and [13, Lemma 10], there exists a
unique function (i.e., zero element) s E Ilr(A, B) which satisfies

64007.'2-7

i= 1, ..., n, J=O, ... , Vi-I, (3.10)
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(We have to say a few words about (3.10). By the method of proof of
Theorem C of [3] we can conclude that any eo.; cannot be a zero of Po
with multiplicity r, i = 1, ..., N. Since il, c c- 2[0, 1] n C {[O, 1]/{~o,;} ~= I},
all s(j)(xo.J in (3.10) are well defined).

Appealing to [7 Theorem I'] once again we get two sets of indices
{it}~=1 and Ut}::'=1 such that

and

(
1, ..., /) (1, ..., m) 0

A.. .• B '. .• -1= ,
II' ..., I, 11, ... , 1m

(3.11 )

(3.12 )

Therefore, it follows from (3.6), (3.12), and [7, Theorem I'] that (3.9)
holds for {id~=1 = {i:}~=1 and Ud::'=1 = U:}::'=I' Noting (3.11) we get
det J;(O) -1=0.

Since (3.7) and other factors in det .1(0) are not zero, we have
det .1(0) -1= O. Now we can continue the proof as in Theorem 3.1 in [2] and
get the unique P(·) := P(l, .) E .c?,.N(A, B; VI' •.. , vn ) satisfying the theorem.
The detail is omitted and referred to [2].

If IXo - IX I = 1 and Po - PI = 0, then P~ has a zero Yo, IE (0, xo.d and
not zero in (XO.n , 1). Instead of (3.3) we consider the following system of
equations:

p(j)(s, t)1 t = x,(s) = 0,

R(s) P(s, Yi(S» = (-1 )"+ai e,(s),

P'(s, t)/= y,(s) = 0,

A,P(s, .) = 0,

B;P(s, . ) = 0,

i = 1, ... , n, j = 0, ... , V,- 1,

i= 1, ..., n + 1,

i= 1, ... , n,

i = 1, ... , t,

i= 1, ..., m,

where Yn+ I(S) = 1.
As before, we can get a unique P E.c?" N (A, B; vI' ... , Vn) satisfying the

theorem. The other cases of IX; and P; may be treated similarly. So Theorem
1 is proved.

Remark 1. Since perfect splines and monosplines may be treated in a
unified way (see [4]), Theorems 1 and 2 hold for monosplines. This is
related to optimal quadrature formula.
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Remark 2. It is not difficult to generalize the results of this paper to the
case where separated boundary conditions are replaced by mixed boundary
conditions, which were studied, e.g., in [8].
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